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The transition probabilities for the components of both the Balmer and Lymanα-lines
of hydrogenic atoms are calculated for the nonrelativistic Schr¨odinger theory, the Dirac
theory, and the recently developed eight-component (8-C) formalism. For largeZ it is
found that all three theories give significantly different results.

1. INTRODUCTION

Recently an eight-component (8-C) relativistic wave equation for spin-1
2 par-

ticles was proposed (Robson and Staudte, 1996; Staudte, 1996) in an attempt to
place particles and antiparticles on a more symmetrical basis than occurs in the
Dirac equation. The 8-C equation gives the same bound-state energy eigenvalue
spectra for hydrogenic atoms as the Dirac equation but the wavefunctions are dif-
ferent, corresponding to a different Hamiltonian. This difference becomes greater
as the nuclear chargeZ increases. With a view to ultimately distinguish experimen-
tally between the Dirac equation and the 8-C equation, it is necessary to investigate
whether the different wavefunctions lead to different predictions for observable
quantities that depend explicitly upon the wavefunctions, e.g., radiative transition
probabilities between the hydrogenic atomic bound states. Unfortunately, the 8-C
equation differs from the Dirac equation not only in having an enlarged solution
space (eight components vs. four components), but also in requiring the use of an
indefinite inner product, which complicates a direct comparison between the use
of the two relativistic wave equations.

In this paper, the relative transition probabilities for the components of both
the Balmer and Lymanα-lines of hydrogenic atoms will be discussed for the
Schrödinger (non-relativistic), Dirac, and the 8-C wave equation formalisms.
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2. SPONTANEOUS EMISSION AND NONRELATIVISTIC
SCHRÖDINGER THEORY

The normal decay of an excited atomic state takes place by the spontaneous
emission of radiation. This process can be described within the framework of time-
dependent perturbation theory and in first order is given by Fermi’s “Golden Rule”
(Friedrich, 1990)

Pfi = 2π

h
〈φf |W|φi〉2ρ(Ef = Ei ). (1)

Here Pfi , is the total probability per unit time for transitions from an initial state
φi to all possible final statesφf , ρ(Ef ) is the density of final states andW is the
“small perturbation” causing the transition.

In the Schr¨odinger theory, the perturbing interaction (in the Coulomb gauge)
to first order is given by

Ws = − e

2µc
[p ·A + A · p] (2)

wherep is the momentum operator associated with the electron,A is the vector
potential operator associated with the electromagnetic field,e= −|e| is the charge
on the electron, andµ is the reduced mass of the hydrogenic atom.

The nonrelativistic Hamiltonian for the hydrogenic atom is

Hs = p2

2µ
− Ze2

r
(3)

wherer = |r | (measured in atomic length units),r = re− r Z , re andr Z being the
spatial coordinates of the electron and the nucleus, respectively.

In the Schr¨odinger theory, spin may be included in the two-component
form and the eigenfunctions of the spin-independent Hamiltonian (3) can be
written

|njlm j 〉 =
∑
m,ms

Rnl(r )Ylm(Ä)χ 1
2 ms

C

(
l
1

2
j ; mmsmj

)
. (4)

Heren, j , l , andmare the usual principal, total angular momentum, orbital angular
momentum, and azimuthal quantum numbers, respectively. The spin quantum
number,ms, takes only the two values+ 1

2 and− 1
2 so that it is convenient to

represent the spin wavefunctionsχ 1
2 ms

in the form

χ 1
2

1
2
=
(

1

0

)
, χ 1

2− 1
2
=
(

0

1

)
. (5)
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The coefficientC(l 1
2 j ; m ms mj ) is the Clebsch–Gordan coefficient as defined by

Rose (1957) and which vanishes unlessmj = m+ms. The radial wavefunction
Rnl(r ) is given by

Rnl(r ) = 1

(2l + 1)!

[
(n+ l )!

(n− l − 1)!2n

] 1
2
(

2Z

n

) 1
2
(

2Zr

n

)l

× exp(−Zr/n)F(l + 1− n, 2l + 2; 2Zr/n) (6)

where

F(a, b; x) = 1+ ax

b
+ a(a+ 1)x

b(b+ 1)2!
+ · · · (7)

is the confluent hypergeometric function. The eigenenergies are given by the Bohr
terms

En = −µe4

2h2

Z2

n2
, n = 1, 2, 3,. . . (8)

From (1) and (2) the probability per unit time for an atomic transition from
an initial state|φi〉 ≡ |njlm j 〉 to a final state|φf〉 ≡ |n′ j ′l ′mj ′ 〉 accompanied by
the emission of a photon with wave vectorkλ, angular frequencyωλ = c|kλ|, and
polarization vectorπλ of unit length is given by

Pfi = 1

2πh

e2ωλ

µ2c3
|〈n′ j ′l ′mj ′ |e−i kλ·rπλ · p|njlm j 〉|2. (9)

Thus the total probability per unit time for an atomic transition from all the initial
states with the samen, j , andl to all the final states with the samen′, j ′, andl ′

accompanied by the emission of a photon of arbitrary polarization in any direc-
tion is

PT =
∑

mj ′ ,mj

∑
λ

∫
Pfi dÄk

= 2e2

µ2c2h

∑
mj ′ ,mj

∑
λ

kλ|〈n′ j ′l ′mj ′ |e−i kλ·rπλ · p|njlm j 〉|2. (10)

Taking thez-axis alongkλ, i.e.,kλ = kλêz, the two polarization components
πλ can be represented byπ± = ∓ 1√

2
(êx ± i êy). Using the plane wave expansion
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in terms of spherical harmonics and spherical Bessel functions

e−i kλ·r =
∑

L

[4π (2L + 1)]1/2i−LYL0(Ä) jL (kλr ) (11)

we obtain

〈n′ j ′l ′mj ′ |e−i kλ·rπ± · p|njlm j 〉

= i
∑

L

(2L + 1)i−L
∑

m

C

(
l ′

1

2
j ′; m+ 1mj −mmj ′

)
C

(
l
1

2
j ; mmj −mmj

)
× [〈n′l ′‖ jL (kλr )‖F (+)

nl

〉
C(l ′Ll ± 1; 0 0 0)C(l + 11l ; 0 0 0)

× C(l + 1L l ′; m± 10m± 1)C(l 1l + 1;m,±1m± 1)

+ 〈n′l ′‖ jL (kλr )‖F (−)
nl

〉
C(l ′Ll − 1; 0 0 0)C(l − 11l ; 0 0 0)

× C(l − 1L l ′; m± 10m± 1)C(l 1l − 1;m,±1m± 1)
]
. (12)

Here the functions|F (±)
nl 〉 are given by

F (+)
nl (r ) =

(
d

dr
− l

r

)
Rnl(r ) and F (−)

nl (r ) =
(

d

dr
− l + 1

r

)
Rnl(r ) (13)

and we have used (A38) of Bethe and Salpeter (1977). The quantities
〈n′l ′ ‖ jL (kλr ) ‖ F (±)

nl 〉 are radial reduced matrix elements. Using (12) in (10) gives
the transition probabilities for the components of the Balmer and Lymanα-lines
for various hydrogenic atoms presented in the columns labelled S in
Tables I–XII.

Table I. Transition Probabilities (in s−1) for the “Allowed” Components of the
Balmer and Lymanα-Lines forZ = 1 Hydrogenic Atom for the Schr¨odinger (S),

Dirac (D), and Eight-Component (8-C) Theories

Transition S D 8-C

3D5/2–2P3/2 3.881+ 08 3.882+ 08 3.882+ 08
3D3/2–2P3/2 4.312+ 07 4.313+ 07 4.313+ 07
3D3/2–2P1/2 2.156+ 08 2.157+ 08 2.157+ 08
3P3/2–2S1/2 8.984+ 07 8.986+ 07 8.986+ 07
3P1/2–2S1/2 4.492+ 07 4.493+ 07 4.493+ 07
3S1/2–2P3/2 8.422+ 06 8.425+ 06 8.426+ 06
3S1/2–2P1/2 4.211+ 06 4.212+ 06 4.213+ 06
2P3/2–1S1/2 2.507+ 09 2.508+ 09 2.508+ 09
2P1/2–1S1/2 1.254+ 09 1.254+ 09 1.254+ 09
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Table II. Transition Probabilities (in s−1) for the “Allowed” Components of the
Balmer and Lymanα-Lines forZ = 18 Hydrogenic Atom for the Schr¨odinger (S),

Dirac (D), and Eight-Component (8-C) Theories

Transition S D 8-C

3D5/2–2P3/2 4.069+ 13 4.072+ 13 4.079+ 13
3D3/2–2P3/2 4.521+ 12 4.523+ 12 4.501+ 12
3D3/2–2P1/2 2.261+ 13 2.280+ 13 2.279+ 13
3P3/2–2S1/2 9.419+ 12 9.392+ 12 9.401+ 12
3P1/2–2S1/2 4.710+ 12 4.772+ 12 4.803+ 12
3S1/2–2P3/2 8.830+ 11 9.263+ 11 9.308+ 11
3S1/2–2P1/2 4.415+ 11 4.470+ 11 4.639+ 11
2P3/2–1S1/2 2.621+ 14 2.622+ 14 2.645+ 14
2P1/2–1S1/2 1.310+ 14 1.319+ 14 1.301+ 14

Table III. Transition Probabilities (in s−1) for the “Allowed” Components of the
Balmer and Lymanα-Lines forZ = 30 Hydrogenic Atom for the Schr¨odinger (S),

Dirac (D), and Eight-Component (8-C) Theories

Transition S D 8-C

3D5/2–2P3/2 3.133+ 14 3.138+ 14 3.153+ 14
3D3/2–2P3/2 3.481+ 13 3.483+ 13 3.435+ 13
3D3/2–2P1/2 1.740+ 14 1.782+ 14 1.779+ 14
3P3/2–2S1/2 7.252+ 13 7.185+ 13 7.203+ 13
3P1/2–2S1/2 3.626+ 13 3.760+ 13 3.831+ 13
3S1/2–2P3/2 6.798+ 12 7.748+ 12 7.853+ 12
3S1/2–2P1/2 3.399+ 12 3.518+ 12 3.902+ 12
2P3/2–1S1/2 2.007+ 15 2.009+ 15 2.058+ 15
2P1/2–1S1/2 1.003+ 15 1.021+ 15 9.820+ 14

Table IV. Transition Probabilities (in s−1) for the “Allowed” Components of the
Balmer and Lymanα-Lines forZ = 54 Hydrogenic Atom for the Schr¨odinger (S),

Dirac (D), and Eight-Component (8-C) Theories

Transition S D 8-C

3D5/2–2P3/2 3.263+ 15 3.278+ 15 3.329+ 15
3D3/2–2P3/2 3.626+ 14 3.629+ 14 3.471+ 14
3D3/2–2P1/2 1.813+ 15 1.957+ 15 1.948+ 15
3P3/2–2S1/2 7.554+ 14 7.248+ 14 7.295+ 14
3P1/2–2S1/2 3.777+ 14 4.268+ 14 4.562+ 14
3S1/2–2P3/2 7.081+ 13 1.062+ 14 1.110+ 14
3S1/2–2P1/2 3.541+ 13 3.970+ 13 5.614+ 13
2P3/2–1S1/2 2.051+ 16 2.053+ 16 2.225+ 16
2P1/2–1S1/2 1.026+ 16 1.086+ 16 9.523+ 15
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Table V. Transition Probabilities (in s−1) for the “Allowed” Components of the
Balmer and Lymanα-Lines forZ = 74 Hydrogenic Atom for the Schr¨odinger (S),

Dirac (D), and Eight-Component (8-C) Theories

Transition S D 8-C

3D5/2–2P3/2 1.140+ 16 1.149+ 16 1.183+ 16
3D3/2–2P3/2 1.266+ 15 1.267+ 15 1.165+ 15
3D3/2–2P1/2 6.331+ 15 7.299+ 15 7.262+ 15
3P3/2–2S1/2 2.638+ 15 2.360+ 15 2.372+ 15
3P1/2–2S1/2 1.319+ 15 1.680+ 15 1.943+ 15
3S1/2–2P3/2 2.473+ 14 5.085+ 14 5.557+ 14
3S1/2–2P1/2 1.236+ 14 1.548+ 14 3.066+ 14
2P3/2–1S1/2 6.994+ 16 6.972+ 16 8.153+ 16
2P1/2–1S1/2 3.497+ 16 3.891+ 16 3.004+ 16

Table VI. Transition Probabilities (in s−1) for the “Allowed” Components of the
Balmer and Lymanα-Lines forZ = 92 Hydrogenic Atom for the Schr¨odinger (S),

Dirac (D), and Eight-Component (8-C) Theories

Transition S D 8-C

3D5/2–2P3/2 2.691+ 16 2.725+ 16 2.852+ 16
3D3/2–2P3/2 2.991+ 15 2.992+ 15 2.626+ 15
3D3/2–2P1/2 1.495+ 16 1.856+ 16 1.857+ 16
3P3/2–2S1/2 6.231+ 15 4.796+ 15 4.721+ 15
3P1/2–2S1/2 3.115+ 15 4.658+ 15 6.134+ 15
3S1/2–2P3/2 5.839+ 14 1.666+ 15 1.939+ 15
3S1/2–2P1/2 2.919+ 14 4.228+ 14 1.316+ 15
2P3/2–1S1/2 1.607+ 17 1.580+ 17 2.035+ 17
2P1/2–1S1/2 8.036+ 16 9.454+ 16 6.138+ 16

Table VII. Transition Probabilities (in s−1) for the “Forbidden” Components of the
Balmer and Lymanα-Lines for Z = 1 Hydrogenic Atom for the Schr¨odinger (S),

Dirac (D), and Eight-Component (8-C) Theories

Transition S D 8-C

3D5/2–2P1/2 1.344− 04 3.115− 04 1.019− 03
3D5/2–2S1/2 3.062+ 02 3.063+ 02 3.063+ 02
3D3/2–2S1/2 2.041+ 02 2.042+ 02 2.042+ 02
3P3/2–2P3/2 4.784+ 01 4.785+ 01 4.785+ 01
3P3/2–2P1/2 4.784+ 01 4.785+ 01 4.785+ 01
3P1/2–2P3/2 4.784+ 01 4.785+ 01 4.785+ 01
3P1/2–2P1/2 1.090− 10 9.816− 10 2.727− 09
3S1/2–2S1/2 0.000+ 00 3.756− 09 3.756− 09
2S1/2–1S1/2 0.000+ 00 4.993− 06 4.993− 06
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Table VIII. Transition Probabilities (in s−1) for the “Forbidden” Components of the
Balmer and Lymanα-Lines for Z = 18 Hydrogenic Atom for the Schr¨odinger (S),

Dirac (D), and Eight-Component (8-C) Theories

Transition S D 8-C

3D5/2–2P1/2 1.480+ 06 3.524+ 06 1.162+ 07
3D5/2–2S1/2 1.040+ 10 1.065+ 10 1.072+ 10
3D3/2–2S1/2 6.934+ 09 7.081+ 09 7.110+ 09
3P3/2–2P3/2 1.626+ 09 1.626+ 09 1.627+ 09
3P3/2–2P1/2 1.626+ 09 1.640+ 09 1.660+ 09
3P1/2–2P3/2 1.626+ 09 1.632+ 09 1.634+ 09
3P1/2–2P1/2 3.889+ 02 3.603+ 03 1.019+ 04
3S1/2–2S1/2 0.000+ 00 1.379+ 04 1.396+ 04
2S1/2–1S1/2 0.000+ 00 1.816+ 07 1.839+ 07

Table IX. Transition Probabilities (in s−1) for the “Forbidden” Components of the
Balmer and Lymanα-Lines for Z = 30 Hydrogenic Atom for the Schr¨odinger (S),

Dirac (D), and Eight-Component (8-C) Theories

Transition S D 8-C

3D5/2–2P1/2 8.798+ 07 2.199+ 08 7.345+ 08
3D5/2–2S1/2 2.224+ 11 2.378+ 11 2.419+ 11
3D3/2–2S1/2 1.483+ 11 1.572+ 11 1.591+ 11
3P3/2–2P3/2 3.478+ 10 3.480+ 10 3.486+ 10
3P3/2–2P1/2 3.478+ 10 3.561+ 10 3.688+ 10
3P1/2–2P3/2 3.478+ 10 3.511+ 10 3.534+ 10
3P1/2–2P1/2 6.421+ 04 6.268+ 05 1.833+ 06
3S1/2–2S1/2 0.000+ 00 2.397+ 06 2.485+ 06
2S1/2–1S1/2 0.000+ 00 3.105+ 09 3.217+ 09

Table X. Transition Probabilities (in s−1) for the “Forbidden” Components of the
Balmer and Lymanα-Lines forZ = 54 Hydrogenic Atom for the Schr¨odinger (S),

Dirac (D), and Eight-Component (8-C) Theories

Transition S D 8-C

3D5/2–2P1/2 9.638+ 09 2.868+ 10 1.007+ 11
3D5/2–2S1/2 7.506+ 12 9.335+ 12 9.903+ 12
3D3/2–2S1/2 5.004+ 12 6.079+ 12 6.347+ 12
3P3/2–2P3/2 1.176+ 12 1.180+ 12 1.183+ 12
3P3/2–2P1/2 1.176+ 12 1.268+ 12 1.439+ 12
3P1/2–2P3/2 1.176+ 12 1.205+ 12 1.254+ 12
3P1/2–2P1/2 2.279+ 07 2.696+ 08 8.938+ 08
3S1/2–2S1/2 0.000+ 00 1.030+ 09 1.167+ 09
2S1/2–1S1/2 0.000+ 00 1.255+ 12 1.418+ 12
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Table XI. Transition Probabilities (in s−1) for the “Forbidden” Components of the
Balmer and Lymanα-Lines for Z = 74 Hydrogenic Atom for the Schr¨odinger (S),

Dirac (D), and Eight-Component (8-C) Theories

Transition S D 8-C

3D5/2–2P1/2 1.190+ 11 4.452+ 11 1.689+ 12
3D5/2–2S1/2 4.922+ 13 7.462+ 13 8.420+ 13
3D3/2–2S1/2 3.281+ 13 4.795+ 13 5.274+ 13
3P3/2–2P3/2 7.731+ 12 7.811+ 12 7.822+ 12
3P3/2–2P1/2 7.730+ 12 8.871+ 12 1.176+ 13
3P1/2–2P3/2 7.730+ 12 7.957+ 12 9.046+ 12
3P1/2–2P1/2 5.283+ 08 8.181+ 09 3.264+ 10
3S1/2–2S1/2 0.000+ 00 3.123+ 10 4.040+ 10
2S1/2–1S1/2 0.000+ 00 3.489+ 13 4.477+ 13

3. DIRAC THEORY

In the Dirac theory of spontaneous emission, the perturbing interaction (in
the Coulomb gauge) to first order is

WD = −eα ·A (14)

where

α =
(

0 σ

σ 0

)
(15)

σ being the usual Pauli spin vector with components

σx =
(

0 1

1 0

)
, σy =

(
0 −i

i 0

)
, σz =

(
1 0

0 −1

)
. (16)

Table XII. Transition Probabilities (in s−1) for the “Forbidden” Components of the
Balmer and Lymanα-Lines for Z = 92 Hydrogenic Atom for the Schr¨odinger (S),

Dirac (D), and Eight-Component (8-C) Theories

Transition S D 8-C

3D5/2–2P1/2 6.730+ 11 3.338+ 12 1.422+ 13
3D5/2–2S1/2 1.797+ 14 3.469+ 14 4.280+ 14
3D3/2–2S1/2 1.198+ 14 2.219+ 14 2.655+ 14
3P3/2–2P3/2 2.830+ 13 2.900+ 13 2.882+ 13
3P3/2–2P1/2 2.829+ 13 3.478+ 13 6.010+ 13
3P1/2–2P3/2 2.829+ 13 2.848+ 13 3.895+ 13
3P1/2–2P1/2 4.619+ 09 1.029+ 11 5.367+ 11
3S1/2–2S1/2 0.000+ 00 3.930+ 11 6.179+ 11
2S1/2–1S1/2 0.000+ 00 3.894+ 14 6.005+ 14
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The Dirac Hamiltonian for the hydrogenic atom

HD = cα · p+ βµc2− Ze2

r
(17)

with

β =
(

12 0

0 −12

)
. (18)

The eigenfunctions of the Hamiltonian (17) can be written

|njlm j 〉 =
∑
m,ms

[
g(r )C

(
l 1

2 j ; mmsmj
)
Ylm(Ä)χ 1

2 ms

i f (r )C
(
l̄ 1

2 j ; mmsmj
)
Ȳlm(Ä)χ 1

2 ms

]
(19)

wherel̄ = l ± 1 for j = l ± 1
2 and the radial functions are (Bethe and Salpeter,

1977)

g(r ) = − [0(2γ + ñ+ 1)
1
2 ]

0(2γ + 1)(ñ!)
1
2

[
(1+ ε)

4N(N − κ)

] 1
2
(

2Z

N

) 3
2
(

2Zr

N

)γ−1

× exp(−Zr/N)[−ñF(1− ñ, 2γ + 1; 2Zr/N)

+ (N − κ)F(−ñ, 2γ + 1; 2Zr/N)] (20)

and

f (r ) = − [0(2γ + ñ+ 1)
1
2 ]

0(2γ + 1)(ñ!)
1
2

[
(1− ε)

4N(N − κ)

] 1
2
(

2Z

N

) 3
2
(

2Zr

N

)γ−1

× exp(−Zr/N)[ñF(1− ñ, 2γ + 1; 2Zr/N)

+ (N − κ)F(−ñ, 2γ + 1; 2Zr/N)]. (21)

Here

κ = −(l + 1) for j = l + 1

2

= +l for j = l − 1

2
(22)

γ = [κ2− α2Z2]
1
2 with α = e2/hc. (23)

ñ = n− |κ| (24)

ε =
[
1+ α2Z2

(ñ+ γ )2

]− 1
2

(25)
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and

N = [n2− 2ñ(|κ| − γ )
] 1

2 . (26)

Corresponding to (9) we have

Pfi = 1

2πh

e2ωλ

c
|〈n′ j ′l ′mj ′ |e−i kλ·rπλ · α|njlm j 〉|2. (27)

Using spherical components ofα:

α0 = αz, α± = ∓ 1√
2

(αx ± iαy) (28)

and the planewave expansion (11) one obtains

〈n′ j ′l ′mj ′ |e−i kλ·rα±|njlm j 〉

= ∓i
√

2
∑

L

i−L (2L + 1)

[
〈g′‖ jL (kλr )‖ f 〉C

(
l ′

1

2
j ′; mj ± 1

2
,±1

2
mj ± 1

)

× C

(
l̄ ′

1

2
j ′; mj ± 1

2
,∓1

2
mj

)
C

(
l̄ ′Ll ′; mj ± 1

2
0mj ± 1

2

)
C(l ′Ll̄ ; 0 0 0)

− 〈 f ′‖ jL (kλr )‖ g〉C
(

l̄ ′
1

2
j ′; mj ± 1

2
,±1

2
mj ± 1

)
× C

(
l
1

2
j ; mj ± 1

2
,∓1

2
mj

)
C

(
l L l̄ ′; mj ± 1

2
0mj ± 1

2

)
C(l̄ ′Ll ; 0 0 0)

]
(29)

whereα± ≡ π± ·α. Using (29) in the relation corresponding to (10):

PT = 2e2

h

∑
mj ′ ,mj

∑
λ

kλ|〈n′ j ′l ′mj ′ |e−i kλ·rπλ ·α|njlm j 〉|2 (30)

gives the transition probabilities for the components of the Balmer and Lyman
α-lines for various hydrogenic atoms presented in the columns labelled D in
Tables I–XII.

4. EIGHT-COMPONENT THEORY

The 8-C equation for a hydrogenic atom in the presence of an external
electromagnetic field is, in the Weyl representation, given (Robson and Staudte,
1996) by (

i h
∂

∂t
18

)
9FV1/2 = HFV1/29FV1/2 (31)
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where

HFV1/2 =
(

Hξ 0

0 Hη

)
(32)

and

Hξ = (τ3+ i τ2)⊗
(

h2

2µ

[
−D212+ ie

hc
σ · (E+ i B)

])
+ τ3⊗ (µc212)+ eA014 (33)

Hη = (τ3+ i τ2)⊗
(

h2

2µ

[
−D212− ie

hc
σ · (E− i B)

])
+ τ3⊗ (µc212)+ eA014 (34)

whereτi are the standard Pauli matrices,⊗ is the Kronecker (direct) product,
E andB are the electromagnetic field intensities, andD = ∂ + (ie/hc) A is the
usual minimal coupling. Thus in the absence of an external electromagnetic field,
the 8-C Hamiltonian for a hydrogenic atom is (settingA0 = −Ze/r )

H8 = p2

2µ
X − i Ze2h

2µcr3
Σ · r + µc2Y − Ze2

r
18 (35)

where X = [12⊗ (τ3+ i τ2)⊗ 12], Σ = [τ3⊗ (τ3+ i τ2)⊗ σ], and Y = [12⊗
τ3⊗ 12].

It should be noted that in this we have assumed the decoupled form of the
8-C theory so that the inner product is given (Staudte, 1996) by

〈9 | 9〉 =
∫
9†(x)τ59(x) d3x (36)

whereτ5 = τ1⊗ τ3⊗ 12.
Choosing the Coulomb gauge i.e.,E = −(1/c)∂A/∂t, B = ∇ × A for the

external field in (33) and (34) gives the perturbing interaction to first order for
spontaneous emission as the sum of three terms:

W8 = W(1)
8 +W(2)

8 +W(3)
8 (37)

where

W(1)
8 = −

e

2µc
[p ·A + A · p]X (38)

W(2)
8 = −

ieh

2µc2

[
τ3⊗ (τ3+ i τ2)⊗ σ · ∂

∂t
A
]

(39)
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W(3)
8 = −

eh

2µc
[12⊗ (τ3+ i τ2)⊗ σ · ∇× A]. (40)

The eigenfunctions of the Hamiltonian (35)|njlm j 〉 can be written as (Robson
and Staudte, 1996)

∑
m,ms


ḡ(r )

{
C
(
l 1

2 j ; mmsmj
)
Ylm(Ä)+ i κ̄C

(
l̄ 1

2 j ; mmsmj
)
Ȳlm(Ä)

}
χ 1

2 ms

f̄ (r )
{
C
(
l 1

2 j ; mmsmj
)
Ylm(Ä)+ i κ̄C

(
l̄ 1

2 j ; mmsmj
)
Ȳlm(Ä)

}
χ 1

2 ms

ḡ(r )
{
C
(
l 1

2 j ; mmsmj
)
Ylm(Ä)− i κ̄C

(
l̄ 1

2 j ; mmsmj
)
Ȳlm(Ä)

}
χ 1

2 ms

f̄ (r )
{
C
(
l 1

2 j ; mmsmj
)
Ylm(Ä)− i κ̄C

(
l̄ 1

2 j ; mmsmj
)
Ȳlm(Ä)

}
χ 1

2 ms

 (41)

wherel̄ = l ± 1 for j = l ± 1
2 and the radial functions are given by

ḡ(r ) = |3|
2[0(2γ̄ + ñ′ + 1)]

1
2

0(2γ̄ + 2)[Z(ñ′ − 1)!]
1
2

{2|3|r }γ̄ {1+ ε + α2Z/r }

× exp(−|3|r )

{2(1− κ̄2)} 1
2

F(1− ñ′, 2γ̄ + 2; 2|3|r ) (42)

f̄ (r ) = |3|
2[0(2γ̄ + ñ′ + 1)]

1
2

0(2γ̄ + 2)[Z(ñ′ − 1)!]
1
2

{2|3|r }γ̄ {1− ε − α2Z/r }

× exp(−|3|r )

{2(1− κ̄2)} 1
2

F(1− ñ′, 2γ̄ + 2; 2|3|r ) (43)

Here

γ̄ = γ − 1 for j = l + 1

2

= γ for j = l − 1

2

(44)

Zακ̄ = κ ± γ for j = l ± 1

2
(45)

ñ′ + γ̄ = ñ+ γ (46)

and

|3| = Z/N. (47)

In the eight-component theory, corresponding to (9) we have

Pfi = 1

2πh

e2kλ
µ2c2

∣∣Mλ
1 + Mλ

2 + Mλ
3

∣∣2 (48)
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where

Mλ
1 = 〈n′ j ′l ′mj ′ |τ5e−i kλ·rπλ · pX|njlm j 〉 (49)

Mλ
2 = −

hkλ
2
〈n′ j ′l ′mj ′ |τ5e−i kλ·rπλ ·Σ|njlm j 〉 (50)

Mλ
3 = −

hkλ
2
〈n′ j ′l ′mj ′ |τ5e−i kλ·rπλ ·Σ′|njlm j 〉 (51)

are the matrix elements corresponding toW(1)
8 , W(2)

8 , andW(3)
8 , respectively, and

Σ′ = 12⊗ (τ3+ i τ2)⊗ σ. (52)

Using the plane wave expansion (11) and the polarization componentsπ±, one
obtains

M (±)
1 = 2i

∑
L

(2L + 1)i−L
∑
ms

[
C

(
l ′

1

2
j ′; mj − ms± 1msmj ± 1

)

× C

(
l
1

2
j ; mj −msmsmj

)
× {〈ḡ′ + f̄ ′‖ jL (kλr )‖F (+)

njl

〉
C(l + 1Ll ′; mj −ms± 10mj −ms± 1)

× C(l ′Ll + 1; 0 0 0)C(l1l + 1; mj −ms, ±1mj −ms± 1)

× C(l + 1 1l ; 0 0 0)

+ 〈ḡ′ + f̄ ′‖ jL (kλr ) ‖ F (−)
njl

〉
C(l − 1Ll ′; mj −ms± 10mj −ms± 1)

× C(l ′Ll − 1; 0 0 0)C(l1l − 1; mj −ms, ±1mj −ms± 1)

× C(l − 1 1l ; 0 0 0)
}

− κ̄ ′κ̄C

(
l̄ ′

1

2
j ′; mj −ms± 1msmj ± 1

)
C

(
l̄
1

2
j ; mj −msmsmj

)
× {〈ḡ′ + f̄ ′‖ jL (kλr )‖F (+)

njl

〉
C(l̄ + 1Ll̄ ′; mj −ms± 10mj −ms± 1)

× C(l̄ ′Ll̄ + 1; 0 0 0)C(l̄1l̄ + 1; mj −ms,±1mj −ms± 1)

× C(l̄ + 1 1̄l 0 0 0)

+ 〈ḡ′ + f̄ ′‖ jL (kλr )‖F (−)
njl

〉
C(l̄ − 1Ll̄ ′; mj −ms± 10mj −ms± 1)

× C(l̄ ′Ll̄ − 1; 0 0 0)C(l̄1l̄ − 1; mj −ms,±1mj −ms± 1)

× C(l̄ − 11̄l ; 000)
}]

(53)
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M (±)
2 = ±hkλ

√
2i
∑

L

(2L + 1)i−L〈ḡ′ + f̄ ′‖ jL (kλr )‖ḡ+ f̄ 〉

×
[
κ̄ ′C

(
l̄ ′

1

2
j ′; mj ± 1

2
,±1

2
mj ± 1

)
C

(
l
1

2
j ; mj ± 1

2
,∓1

2
mj

)
× C

(
l L l̄ ′; mj ± 1

2
0mj ± 1

2

)
C(l̄ ′Ll ; 0 0 0)

+ κ̄C

(
l ′

1

2
j ′; mj ± 1

2
,±1

2
mj ± 1

)
C

(
l̄
1

2
j ; mj ± 1

2
,∓1

2
mj

)
× C

(
l̄ Ll ′; mj ± 1

2
0mj ± 1

2

)
C(l ′Ll̄ ; 0 0 0)

]
(54)

M (±)
3 = ±hkλ

√
2
∑

L

(2L + 1)i−L〈ḡ′ + f̄ ′‖ jL (kλr )‖ḡ+ f̄ 〉

×
[
C

(
l ′

1

2
j ′; mj ± 1

2
,±1

2
mj ± 1

)
C

(
l
1

2
j ; mj ± 1

2
,∓1

2
mj

)
× C

(
l Ll ′; mj ± 1

2
0mj ± 1

2

)
C(l ′Ll ; 0 0 0)

− κ̄ ′κ̄C

(
l̄ ′

1

2
j ′; mj ± 1

2
,±1

2
mj ± 1

)
C

(
l̄
1

2
j ; mj ± 1

2
,∓1

2
mj

)
× C

(
l̄ L l̄ ′; mj ± 1

2
0mj ± 1

2

)
C(l̄ ′Ll̄ ; 0 0 0)

]
. (55)

Using (53), (54), and (55) in the relation corresponding to (10):

PT = 2e2

hµ2c2

∑
mj ′ ,mj

∑
λ

kλ
∣∣Mλ

1 + Mλ
2 + Mλ

3

∣∣2 (56)

gives the transition probabilities for the components of the Balmer and Lyman
α-lines for various hydrogenic atoms presented in the columns labelled 8-C in
Tables I–XII.

5. COMPARISON OF RESULTS AND CONCLUSION

Tables I–VI show the transition probabilities (in s−1) for the “allowed” com-
ponents of the Balmer and Lymanα-lines for various hydrogenic atoms (Z= 1, 18,
30, 54, 74, and 92). Tables VII–XII show the corresponding transition probabilities
for the “forbidden” components, i.e., those components which are not allowed in
the usual dipole approximation (Friedrich, 1990). The columns labelled S show
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the results given by the nonrelativistic Schr¨odinger theory (Eq. (10)). The re-
sults for the “allowed” components for hydrogen agree with those of Condon and
Shortley (1935). The columns labelled D give the predictions of the Dirac theory
(Eq. (30)). These are in close agreement with those of Pal’chikov (1998) and dif-
fer considerably from the Schr¨odinger results for largeZ. The columns labelled
8-C show the results for the eight-component theory (Eq. (56)). As for the Dirac
theory, the predictions of the 8-C theory for lowZ are approximately the same
as the Schr¨odinger predictions. However, for larger values ofZ, it is seen that
the results differ significantly from both the Schr¨odinger and Dirac results. These
results indicate for the first time that the Dirac and 8-C theories are not identical
in all their predictions.

The calculated differences between the two relativistic formalisms imply that
in special circumstances it may be possible to determine by observation which
theory is valid. However, at the present time, it is impossible to measure directly
the transition probabilities for the components of the Balmer and Lymanα-lines
for high Z hydrogenic atoms since the lifetimes of the excited states are too short
so that the “allowed” transitions are prompt. On the other hand, the “forbidden”
transitions are masked by “allowed” transitions, except for the 3D5/2 to 2P1/2

or 2S1/2 transitions. These “forbidden” transitions may eventually be measurable
for intermediateZ values (Z ' 50) where the transition probabilities are'6×
1012 s−1. However forZ = 50, the differences between the Dirac and 8-C theories
are only'5% for the dominant mode 3D5/2 to 2S1/2.
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